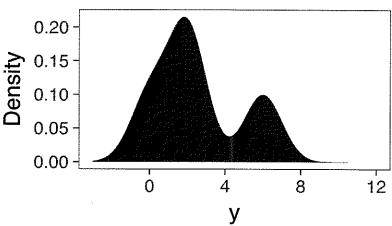
Your Turn

Consider the following population distribution.



The following three histograms represent:

- \rightarrow 1. A sample of size 1000 from the population B
- \Rightarrow 2. 1000 sample means of samples of size 10 from the population $\frac{\sqrt{2} + 6}{\sqrt{6}}$
 - 3. 1000 sample means of samples of size 100 from the population

Shape Variance 1(1)10

4

Your turn

Using the CLT to approximation the sampling distribution

Population: $\sim (\mu = 20, \sigma^2 = 4)$

Sample: n = 16 i.i.d from population, $\frac{1}{12}$, ..., $\frac{1}{12}$

Sample statistic: Sample mean, $\overline{Y} = \frac{16}{5} Y_i$

What is the approximate distribution for \overline{Y} ?

$$\frac{7}{4} N(420, 4)$$
 $\frac{4}{16}$
 $\frac{7}{4} N(20, 4)$

Applying CLT

Same setup: we have sample of size, n=16 from a population with population mean $\mu=20$ and population variance $\sigma^2=4$.

What is the probability the sample mean is less than 20.5?

CLT says:

$$Y \sim N(20, \frac{1}{4})$$
 $P(Y \leq 20.5)$

Continuous \leq doesn't matter which

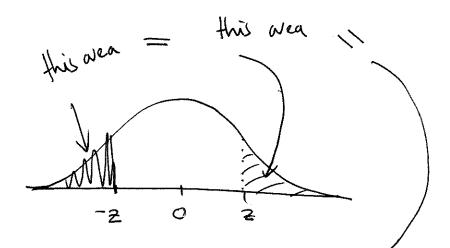
Using a Standard Normal Probability Table

To use a Standard Normal table, we first need to transform our random variable (Y) to a Standard Normal.

We can convert a probability for \overline{Y} to a standard Normal probability by:

- 1. Subtracting the mean of \overline{Y} from both sides, then
- 2. Dividing both sides by the standard deviation of \overline{Y} (square root of the variance)

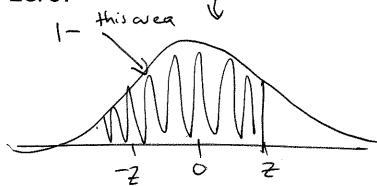
Using a Standard Normal Probability Table



What if z is negative?

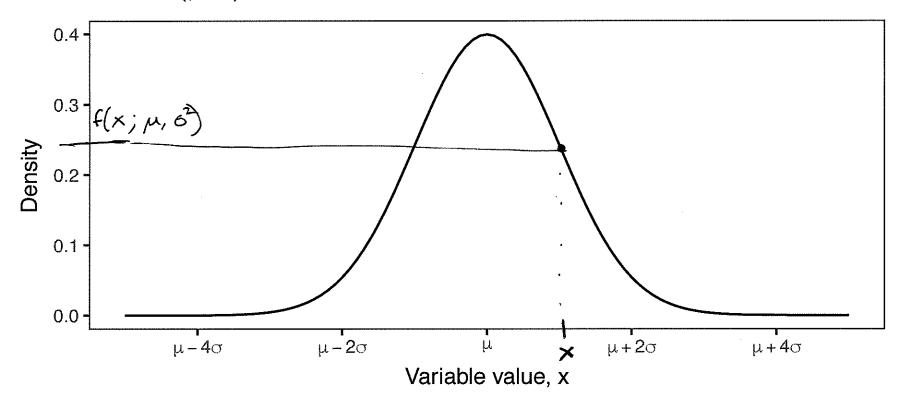
Standard Normal is symmetric around zero.

$$P(Z \le -z) = 1 - P(Z \le z)$$



Density

Density: height of probability density function at x: $f(x; \mu, \vec{\sigma})$ Normal $(\mu, \vec{\sigma})$

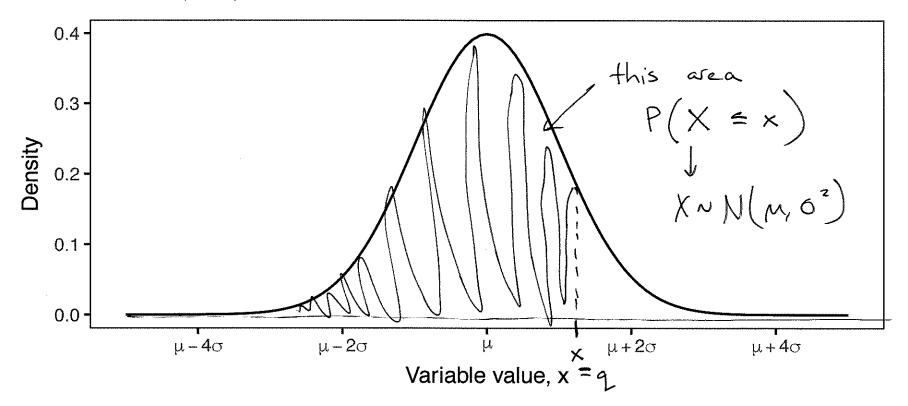


In R: dnorm(x, mean = mu, sd = sigma)

Cumulative Probability

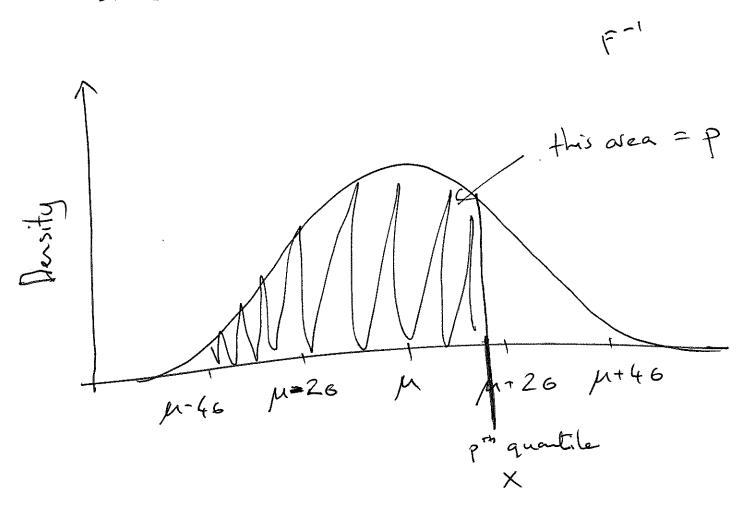
Cumulative Probability: the area under the probability density function to the with of x: $F(x; \mu, \sigma)$

Normal(μ , σ)



In R: pnorm(q, mean = mu, sd = sigma)

Area to 1880? right? 1 - prom (q, mean, sd)



Exercise: Find probability

Return to example:
$$\mu = 20 \ \sigma^2 = 4$$
, $n = 16$

What is $P(\overline{Y} < 20.5)$? What is $P(\overline{Y} < 21)$

$$P_{norm} \left(20.5, mean = 20, sd = \frac{1}{2} \right)$$

$$= 0.8413$$

$$P(\overline{Y} < 21) = 0.977$$

Exercise: Find sample size for specific variance in sample mean

Similar setup
$$\mu=20, \sigma^2=4.$$
 Sample n iid Sample mean

What should *n* be so $Var(\overline{Y}) = 0.5$?

$$V_{x}(Y) = \frac{6^{2}}{n}$$

$$= \frac{4}{n} = 0.55$$

$$= \frac{4}{0.5} = n$$

$$= 8$$

Exercise: Find sample size for an interval with desired probability

What should n be, so that
$$P(19.5 < \overline{Y} < 20.5) = 0.9$$
?

Transform to a statut about $Z \sim N(0, 1)$

$$P\left(\frac{19.5 - 20}{2\sqrt{n}} < \frac{\overline{Y} - 20}{2\sqrt{n}} < \frac{20.5 - 20}{2\sqrt{n}}\right) = 0.9$$

$$P\left(-\sqrt{n} \frac{1}{4} < \overline{Z} < \frac{\sqrt{n}}{4}\right) = 0.9$$

$$P\left(-\sqrt{n} \frac{1}{4} < \overline{Z} < \overline{Z} < \frac{\sqrt{n}}{4}\right) = 0.9$$

$$P\left(-\sqrt{n} \frac{1}{4} < \overline{Z} < \overline{Z} < \overline{Z} < \frac{\sqrt{n}}{4}\right) = 0.9$$

$$P\left(-\sqrt{n} \frac{1}{4} < \overline{Z} < \overline$$