T-tests

ST551 Lecture 10

Charlotte Wickham 2017-10-11

Warm up: from last times slides:

A random sample of n=25 Corvallis residents had an average IQ score of 104. Assume a population variance of $\sigma^2=225$. What's the mean IQ for Corvallis residents? Is it plausible the mean for Corvallis residents is greater than 100?

Find point estimate, Z-stat and p-value, and 95% confidence interval

qnorm(0.975) = 1.96pnorm(1.33) = 0.9082409

Finish last time's slides

t-tests

Inference for a population mean

What do we do if we don't know σ^2 ? Realistically this is always the case

We can estimate σ^2 , just like we estimated μ :

- We used the sample mean to estimate the population mean
- We can use the sample variance to estimate the population variance

Sample variance

The sample variance for a sample Y_1, \ldots, Y_n is:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

Facts about the sampling distribution of the sample variance:

- The mean is σ^2 , i.e. s^2 is an unbiased estimate of σ^2
- As the sample size n gets larger, s^2 gets closer and closer to the true population variance σ^2 , i.e. s^2 is consistent estimate of σ^2

t-statistic

If we replace σ^2 with s^2 in the Z-statistic for testing H_0 : $\mu=\mu_0$, we get a t-statistic:

$$Z(\mu_0) = \frac{\overline{Y} - \mu_0}{\sqrt{\sigma^2/n}} \rightarrow t(\mu_0) = \frac{\overline{Y} - \mu_0}{\sqrt{s^2/n}}$$

Reference distribution

We compared the Z-statistic to N(0,1)

■ Why? N(0,1) is the distribution we expect for Z, when the null hypothesis is true

What should we compare a t-statistic to?

- s^2 will sometimes be smaller than σ^2 , sometimes bigger
- Introduces additional variability into our test statistic

t-distribution

The null distribution for a t-statistic is the t-distribution.

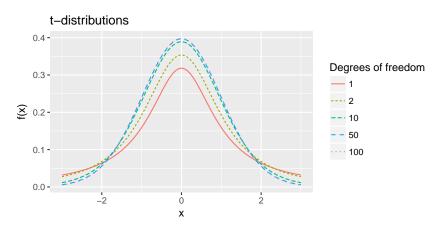
the t-distribution is a family of distributions defined by a single parameter the *degrees of freedom*

Notation:

- $t_{(1)}$ t-distribution with 1 degree of freedom
- $t_{(3)}$ t-distribution with 3 degrees of freedom
- t(v) t-distribution with v degree of freedom

Looks a lot like a Standard normal but with heavier tails and sharper peak.

t-distribution



As $v o \infty$ $t_{(v)}$ approaches the Standard Normal density.

t-test: Inference for population mean

- If the population is exactly Normal:
 - Y exactly Normal.
 - t-statistic is exactly a t-distribution with n-1 degrees of freedom
- If population is anything with finite variance:
 - Y approximately Normal,
 - ullet t-statistic approximately t-distribution with n-1 d.f.

t-test: Inference for population mean

Rather than coming from a Standard Normal:

- Rejection region critical values come from t-distribution quantiles
- CI multipliers come from t-distribution quantiles
- P-values come from the cumulative distribution function of the t-distribution

```
In R: pt(q, df), qt(p, df), dt(x, df)
```

t-test: Summary

Data Setting One sample, no explanatory variable Y_1, \ldots, Y_n i.i.d from population with unknown variance σ^2

Null hypothesis $H_0: \mu = \mu_0$

Test statistic

$$t(\mu_0) = \frac{\overline{Y} - \mu_0}{\sqrt{s^2/n}}$$

Reference distribution $t(\mu_0) \dot{\sim} t_{(n-1)}$

t-test: Summary

Rejection Region for level α test

One sided	Two sided	One sided
$H_A: \mu < \mu_0$	H_A : $\mu \neq \mu_0$	$H_A: \mu > \mu_0$
$t(\mu_0) < t_{(n-1)\alpha}$	$ t(\mu_0) > t_{(n-1)1-\alpha/2}$	$t(\mu_0) > t_{(n-1)1-\alpha}$

$$t_{(n-1)\alpha}=\operatorname{qt}(\operatorname{alpha},\ \operatorname{df}=\operatorname{n}$$
 - 1)

t-test: Summary

p-values given an observed $t(\mu_0) = t$

One sided		One sided
$H_A: \mu < \mu_0$	Two sided H_A : $\mu \neq \mu_0$	$H_A: \mu > \mu_0$
$\overline{F_t(t;n-1)}$	$2(1-F_t(t ;n-1))$	$1-F_t(t;n-1)$

$$F_t(t; n-1) = pt(t, df = n-1)$$

Confidence Intervals $(1-\alpha)100\%$

$$\left(\overline{Y}-t_{(n-1)1-\alpha/2}\sqrt{\frac{s^2}{n}},\,\overline{Y}+t_{(n-1)1-\alpha/2}\sqrt{\frac{s^2}{n}}\right)$$

Standard error

$$Var(\overline{Y}) = \frac{\sigma^2}{n}$$

We estimated σ^2 with s^2 , hence estimate $Var(\overline{Y})$ with

$$\widehat{Var}(\overline{Y}) = \frac{s^2}{n}$$

Square root of this, often called, standard error of the mean:

$$SE(\overline{Y}) = \frac{s}{\sqrt{n}}$$

In general **standard error** refers to the *estimated* standard deviation of an estimator.

Next time

Population proportions (a special case of population means)