Chi-square Goodness of Fit

ST551 Lecture 17

Charlotte Wickham 2017-10-30

Finish last time's slides

What about discrete distributions?

The K-S test is only appropriate for continuous distirbutions (the hypothesized distribution is continuous).

But what about if our hypothesis if for a discrete distribution, e.g.:

- Discrete Uniform
- Bernoulli
- Poisson

Setting

Population: $Y \sim \text{some discrete}$ population distribution with p.m.f

$$p(y) = P(Y = y)$$

Sample: n i.i.d from population, Y_1, \ldots, Y_n

Parameter: Whole p.m.f

Hypotheses: $H_0: P(Y = y) = p_0(y)$, versus

 $H_A: P(Y=y) \neq p_0(y)$

4

Sample estimate of the p.m.f

The discrete sample based estimate of the probability mass function:

$$\hat{p}(y) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ Y_i = y \}$$

The Chi-square Goodness of Fit test

Chi-square goodness of fit compares the estimated p.m.f to the hypothesized one.

Pearson's Chi-square statistic:

$$X(p_0) = \sum_{y} \frac{n(\hat{p}(y) - p_0(y))^2}{p_0(y)}$$

Under null hypothesis: $X(p_0)$ converges in distibrution (as n goes to infinity) to χ^2 with k-1 degrees of freedom

k = number of possible values for Y.

An alternative presentation

- j = 1, ..., n indexes possible values/categories for Y
- O_j be the observed number of values in category j
- $E_j = np_0(j)$ be the expected number of values in category j, based on the hypothesized distribution.

Pearson's Chi-square statistic:

$$X(p_0) = \sum_{j=1}^k \frac{(O_j - E_j)^2}{E_j}$$

Example: Dice rolling

I rolled a die 60 times and recorded how many times I got each side: 1, 2, 3, 4, 5, 6

Question: Is the die fair? That is, is $p_0(j) = 1/6$ for j = 1, 2, 3, 4, 5, 6?

	1	2	3	4	5	6
Oj	20	11	6	7	6	10

8

Rejection region

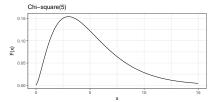
Reject
$$H_0$$
 for $X(p_0) > \chi^2_{(k-1)}(1-\alpha)$

Rejection region always to the right, p-values always area to right.

Why? We usually are only interested in evidence of poor fit (not evidence of extra good fit)

Example: Dice rolling cont.

Compare to $\chi^2_{(5)}$



$$qchisq(0.95, df = 5)$$

[1] 11.0705

[1] 0.01438768

In R:

```
rolls
## [1] 6 5 2 2 6 2 1 1 5 1 2 2 1 1 3 4 5 1 2 4 1 6 6
## [24] 2 4 1 6 6 1 6 1 1 6 1 3 1 3 4 1 1 5 3 4 2 5 1
## [47] 6 3 1 4 3 2 5 1 6 2 1 4 1 2
chisq.test(table(rolls), p = rep(1/6, 6))
##
##
    Chi-squared test for given probabilities
##
## data: table(rolls)
## X-squared = 14.2, df = 5, p-value = 0.01439
```

Estimation of parameters

If the null hypothesis doesn't completely specify the distribution p_0 , but specifes a family of distributions, $p_0(\theta_1, \theta_2, \dots, \theta_d)$ where the θ are unknown parameters.

You can still use the Chi-square test with some modification

- 1. Estimate the parameters $\theta_1, \theta_2, \dots, \theta_d$
- 2. Find E_j based on estimated parameters and p_0 .
- 3. Compute Pearson's χ^2 statistic as usual
- 4. Compare statistic to a χ^2 with k-d-1 degrees of freedom, where d is the number of parameters that were estimated.

Example: Poisson

I counted the number of passengers in n=40 vehicles passing through an intersection.

Question: Is the number of passengers per vehicle distributed according to a Poisson distribution?

	0	1	2	3	4	5	6
O_j	6	11	11	8	3	0	1

mean(passengers)

[1] 1.875

Example: Poisson

	0	1	2	3	4	5	6
Oj	6	11	11	8	3	0	1

```
p_0 <- dpois(0:6, lambda = mean(passengers))
(E <- p_0 * n)</pre>
```

```
## [1] 6.1341987 11.5016225 10.7827711 6.7392319
## [5] 3.1590150 1.1846306 0.3701971
```

```
# For 7+ category
(E_7 <- (1 - sum(p_0)) * n)
```

```
## [1] 0.1283331
```

Example: Poisson

Test statistic:

$$\frac{(6-6.13)^2}{6.13} + \frac{(11-11.5)^2}{11.5} + \ldots + \frac{(0-0.13)^2}{0.13} = 2.66$$

Compare to χ^2_{k-d-1}

[1] 0.8504434

Other points

• For binary data, the $X(p_0)$ statistic is equal to the square of the Z-statistic for testing a hypothesis regarding a binary proportion.

Therefore, for two sided hypothesis testing $H_0: p=p_0$ vs $H_A: p \neq p_0$, the χ^2 test and the z-test give the exact same result.

• The χ^2 statistic has an **asymptotic** χ^2 distribution. Therefore this test is approximate: the test is asymptotically exact.

The approximation is generally considered appropriate when $E_j > 5$ for all j.

Next time

Starting two sample inference. . .