ST551 Lecture 23

Charlotte Wickham 2017-11-15

Finish last time's slides

Imagine now that our two samples of Bernoulli populations aren't independent, but paired in some way.

$$Y_i, \ldots, Y_n \sim \mathsf{Bernoulli}(p_Y)$$

 $X_i, \ldots, X_n \sim \mathsf{Bernoulli}(p_X)$
but (Y_i, X_i) are paired.

Examples:

- n subjects with a disease, and n without a disease are sampled then matched (based on demographic factors), response is presence of some risk factor
- Sibling (or twin) studies: n pairs of related people where one falls in one group, and the other falls in the other group, observe some binary response on every person.
- Binary before and after measurements on the same person

Gather sample of n = 40 voters.

Before debate: Will you vote for candidate A? After debate: Will you vote for candidate A?

subject	before	after
1	1	1
2	1	0
3	1	0
4	1	1
5	1	1
6	1	0

5

Just a 2×2 table?

	0	1
after	21	19
before	23	17

	0	1
0	12	11
1	9	8

How to analyse?

Option 1: Treat like paired two sample data and do a paired t-test

Option 2: McNemar's test

Paired t-test

Null hypothesis: $H_0: p_{before} = p_{after}$

Look at (per voter) differences:

subject	before	after	diff
1	1	1	0
2	1	0	-1
3	1	0	-1
4	1	1	0
5	1	1	0
6	1	0	-1

-1	0	1
9	20	11

Paired t-test calculations

$$\overline{D} = \frac{1}{n} \left((-1 \times 9) + (0 \times 20) + (1 \times 11) \right) = \frac{b - c}{n} = \frac{2}{40} = 0.05$$

$$s_D^2 = \frac{1}{n - 1} \left(9(-1 - \overline{D})^2 + 20(0 - \overline{D})^2 + 11(1 - \overline{D})^2 \right)$$

$$= \frac{1}{n - 1} \left(c + b - \frac{(b - c)^2}{n} \right)$$

$$= \frac{1}{40 - 1} \left(9 + 11 - \frac{(11 - 9)^2}{n} \right)$$

$$= 0.51$$

Paired t-test calculations

```
##
##
   One Sample t-test
##
## data: df$diff
## t = 0.4427, df = 39, p-value = 0.6604
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.1784514 0.2784514
## sample estimates:
## mean of x
## 0.05
```

McNemar's test

Null hypothesis: $H_0: p_{before} = p_{after}$

Conditions on the number of discordant pairs, b + c.

	0	1
0	12	11
1	9	8

Under Null hypothesis, we expect the number of discordant pairs (e.g. people who change their minds during debate) should be equally split between b and c.

McNemar's test

Conditional on b + c,

$$b \sim \mathsf{Binomial}(b+c,0.5)$$

Do, one sample Z-test for proportions, leads to

$$Z = \frac{b-c}{\sqrt{b+c}} \dot{\sim} N(0,1)$$
 under null hypothesis

(sometimes people square this statistic, and compare to $\chi^2_1)$

Example: McNemar's

	0	1
0	12	11
1	9	8

$$Z = \frac{b-c}{\sqrt{b+c}} = \frac{11-9}{\sqrt{11+9}} = 0.45$$

Compare to N(0,1)

Final points

- McNemar's test is equivalent to the paired t-test, in the sense that the two test statistics are monotone transformations of each other.
- For large sample sizes, the two test statistics get closer and closer to the same value: asymptotically equivalent.