Other two sample comparisons

ST551 Lecture 25

Charlotte Wickham

2017-11-20

Charlotte to ask about Weds lab

Laba on Weds YES! HW #7 due Friday @ midnight HW #8 last homework released Weds might
due Fr: @ midnight 1st Dec Some time rext usale: practice final final study guide Charlotte will have office hows in finals week. Dec 7th 9.30-11-20 LINE 368

Closed book.

2

So far

Our two sample comparisons have focused on means (or proportions)

What else could we compare?

- Medians
- Variances
- Whole distributions

Comparing medians: Mood's median test

Mood's median test

Setting: two indpendent samples

 Y_i i.i.d sample of size n from population with c.d.f F_Y

 X_i i.i.d sample of size m from population with c.d.f F_X

 $m_Y = F_Y^{-1}(0.5) =$ median of population that Y is sampled from.

 $m_X = F_X^{-1}(0.5) =$ median of population that X is sampled from.

Comparison of interest: Is m_Y the same as m_X ?

Example

A study is performed to assess the effect of fish oil supplements on diastolic blood pressure

- 25 subjects are randomly assigned to receive fish oil $(n_Y = 12)$ or regular vegetable oil $(n_X = 13)$ for two weeks.
- Each subject's decrease in diastolic blood pressure over those two weeks is recorded (bigger numbers => better reduction in blood pressure)

Fish oil: -2.2, -0.8, 3.7, 4.9, 5, 5.2, 5.3, 6, 8, 8, 10.4 and 14

Regular oil: -6.4, -6.4, -5.9, -5.8, -5.3, -4.9, -4.4, 0.2, 2.1, 2.5, 2.5, 6.1 and 8.9

Question: Is the median blood pressure reduction the same for these two treatments?

6

Your turn

- If the null is true, $m_Y = m_X = m$, what is our best guess for the median m?) Combine data, get median m? Sample medians
- If the null is true, what proportion of the sample from Y should be larger than m? $\sim \frac{1}{2}$
- If the null is true, what proportion of the sample from X should be larger than m?

Estimating the combined median

$$\hat{m}_Y = \hat{m}_X = \hat{m} = \text{median}(Y_1, Y_2, \dots, Y_n, X_1, X_2, \dots, X_m)$$

If the null is true, this estimate is an <u>unbiased</u> and <u>consistent</u> estimate of the common median, *m*.

We expect
$$P(Y_i > m) = P(X_i > m) = 0.5$$

For large samples, $P(Y_i > \hat{n}) = P(X_i > \hat{n}) = 0.5$

Mood's median test

Procedure:

- 1. Find the combined median \hat{m} .
- 2. Test the true proportion of Y's greater than \hat{m} is equal to the true proportion of X's greater than \hat{m} .
 - Z-test for proportions/Chi-square test or Fishers exact test

Example cont.

Combined sample:

[1]
$$-6.4$$
 -6.4 -5.9 -5.8 -5.3 -4.9 -4.4 -2.2 -0.8 ## [10] 0.2 2.1 2.5 2.5 3.7 4.9 5.0 5.2 5.3 ## [19] 6.0 6.1 8.0 8.0 8.9 10.4 14.0 25 numbers

Combined median, $\hat{m} = 2.5$

	Number $> \hat{m}_{7.5}$	Number $\leq \hat{m}$
Fish Oil	10	2
Regular Oil	2	11

Example cont.

$$Z = \frac{\hat{p}_{Y} - \hat{p}_{X}}{\sqrt{\hat{p}_{c}(1 - \hat{p}_{c})\left(\frac{1}{n} + \frac{1}{m}\right)}}$$

$$= \frac{\frac{10}{12} - \frac{2}{13}}{\sqrt{\frac{12}{25}(1 - \frac{12}{25})\left(\frac{1}{12} + \frac{1}{13}\right)}}$$

$$= 3.4 \qquad \text{Compare N(0, 1)}$$

p-value =
$$6.8 \times 10^{-4}$$
. 0.0006 \$

There is convincing evidence that the median BP reduction on fish oil is different to the median BP reduction on regular oil.

Wilcoxon Rank Sum test

Wilcoxon Rank Sum

Wilcoxon Rank Sum, a.k.a Mann-Whitney U-test

Often presented as a test for equality of medians, like Wilcoxon Signed Rank, this isn't true without further assumptions.

Wilcoxon Rank Sum Procedure

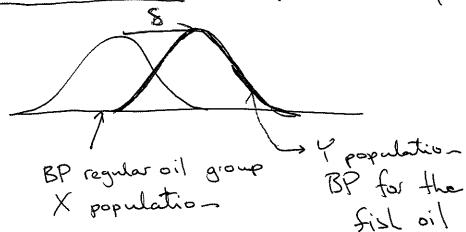
- 1. Combine the samples
- 2. Rank the observations in the combined sample from smallest (1) to largest (n + m). If there are ties, assign the average rank to the tied observations.
- 3. **Test statistic:** Sum of the ranks in the sample with the smaller sample size
- 4. p-value: either use Normal approximation, or via permutation large samples

 permute group labels

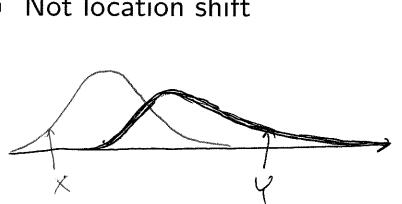
 on the ranks.

Intutition: if all the observations come from the same distribution, it would be unlikely for all the observations in the sample to have all the highest ranks (or lowest).

Example


Combined sample:

```
· Ranks
## Regular Oil Regular Oil Regular Oil
                                                  from 1 to 25
         -6.4 \times 1.5 -6.4 \times 1.5 -5.93 -5.84
##
## Regular Oil Regular Oil Fish Oil
                                          -2.2 B Resolve ties
         -5.35 -4.96 -4.47
##
                    0.2 (0 2.1 ) \frac{2.5}{2.5} \frac{1}{2.5} \frac{1}{2.5}
## Fish Oil Regular Oil Regular Oil Regular Oil
         -0.89
##
## Regular Oil Fish Oil Fish Oil Fish Oil
                                           5.0(16
          2.5 13 12.5 3.7(14)
##
    Fish Oil _ Fish Oil _ Fish Oil Regular Oil
##
                                6.0(19)
                                           6.1 20
##
    Fish Oil Fish Oil Regular Oil Fish Oil
##
          8.0 2 (21·5) <u>8.0</u> 24(21·5) 8.9 23 10.4(24
##
     Fish Oil
##
         14.0
##
        25 statistic -> Hwth8


gon will compare to reference
                                                              15
```

Problems

Location-shift assumption

Not location shift

: Shift & distribution & wits

es additive effect

Mean is different Medians are different Variances and different Shape is different

Assure location - shift "additive treatment"

J. S = 0 Mx=My, mx = my

HA: 8#0

Wilcoxon Rak Sum is exact consistent

year da () you don't assume location shift

Wilcoxon Rade Sum is not:

a test for some means a test for same medians

· WR Sum is set not exact, or consiste

Ho. P(Y>X) - 0.5 Elack R Consistent for the hypothesis

		•	