Delta Method and the Bootstrap

ST551 Lecture 26

Charlotte Wickham 2017-11-27

Announcements

Lectures this week:

- Today lecture: Delta method and Bootstrap
- Weds lecture: Randomization & Permutation
- Friday lecture: Cancelled Office hours instead WNGR 255

Formula Sheet The final is closed book, no note sheet. I am willing to provide some of the harder (less common) formulae.

lae. Email me suggestion:

Lab: No set material, I'll encourage Chuan to lead a formula strategy session.

Delta Method

Delta Method

If the sampling distribution of a statistic converges to a Normal distribution, the Delta method, provides a way to approximate the sampling distribution of a function of a statistic. Eg. $Y \sim \mathcal{N}(\mu, 6^2)$

Univariate Delta Method

If

$$\sqrt{n} \left(\hat{\theta} - \theta \right) \rightarrow_D N(0, \sigma^2)$$

statistic population value derivatives of g
 $\sqrt{n} \left(g(\hat{\theta}) - g(\theta) \right) \rightarrow_D N(0, \sigma^2 [g'(\theta)]^2)$

The function

then

$$\sqrt{n}\left(g(\hat{ heta})-g(heta)
ight)
ightarrow_D N(0,\sigma^2[g'(heta)]^2)$$
 some function

(As long as $g'(\theta)$ exists and is non-zero valued.)

Another way of saying it

If we know,

for large samples $\hat{\theta} \sim N(\theta, \sigma^2)$ assymptotically unbiased

then,

$$g(\hat{\theta}) \stackrel{.}{\sim} N(g(\theta), \sigma^2[g'(\theta)]^2)$$

The approximation can be pretty rough. I.e. just because the sample is large enough that the original statistic is reasonably Normal, doesn't meant the transformed statistic will be.

In general
$$E(g(\hat{\theta})) \neq g(E(\hat{\theta}))$$

Example: Log Odds

Let
$$Y_1, \ldots, Y_n \sim \text{Bernoulli}(p)$$
, and $X = \sum_{i=1}^n Y_i$. =# of 1 's

We know
$$\hat{p} = \frac{X}{n} \stackrel{*}{\sim} N(p, \underbrace{\frac{p(1-p)}{n}})$$
.

We might estimate the log odds with:

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right)$$

What is the assymptotic distribution of the estimated log odds?

Example: Log Odds cont.

$$g(p) = \log\left(\frac{p}{1-p}\right) = \log(p) - \log\left(\frac{1-p}{p}\right)$$

$$g'(p) = \frac{1}{p} + \frac{1}{1-p} \qquad \text{(hadest part runches differentiation)}$$

$$= \frac{1}{p(1-p)}$$

$$g(\hat{p}) = \log\left(\frac{\hat{p}}{1-\hat{p}}\right) \sim N\left(\log\left(\frac{p}{1-p}\right), \frac{p(1-p)}{n}, \frac{1}{(p(1-p))^2}\right)$$

$$\sim N\left(\log\left(\frac{p}{1-p}\right), \frac{1}{n}, \frac{1}{(p(1-p))^2}\right)$$

Other comments on delta method

Derived using a Taylor expansion of $g(\hat{\theta})$ around $g(\theta)$

There is also a multivariate version (useful if you need some function of two statistics, e.g. ratio of sample means)

$$\frac{\overline{X}}{\overline{Y}}$$
 $\dot{\sim}$

$$\hat{\Theta} = (X, X)$$

$$\Theta = (M_X, M_Y)$$

Bootstrap

Bootstrap

A method to approximate the sampling distribution of a statistic **Idea:**

- Recall, one way to approximate the sampling distribution of a statistic was by **simulation**, but you have to assume a population distribution.
- The bootstrap uses the *empirical distribution function* as an estimate for the population distribution, i.e relies on

$$\hat{F}(y) \approx F(y)$$
 frue population empirical c.d.f.

based on a sample

Example - Sampling distribution of Median by simulation

Assume a population distribution, i.e. $Y \sim N(\mu, \sigma^2)$

Repeat for
$$k = 1, \dots, B$$

- 1. Sample *n* observations from $N(\mu, \sigma^2)$
- 2. Find sample median, $m^{(k)}$

Then the simulated sample medians, $m^{(k)}, k = 1, ..., B$ approximate the sampling distribution of the sample median.

Example - Sampling distribution of Median by bootstrap

Estimate the population distribution from the sample, i.e. $\hat{F}(y)$

Repeat for
$$k = 1, \dots, B$$

- 1. Sample n observations from a population with c.d.f $\hat{F}(y)$
- 2. Find sample median, $m^{(k)}$

Then the bootstrapped sample medians, $m^{(k)}, k = 1, ..., B$ approximate the sampling distribution of the sample median.

Sampling from a c.d.f

f(y)

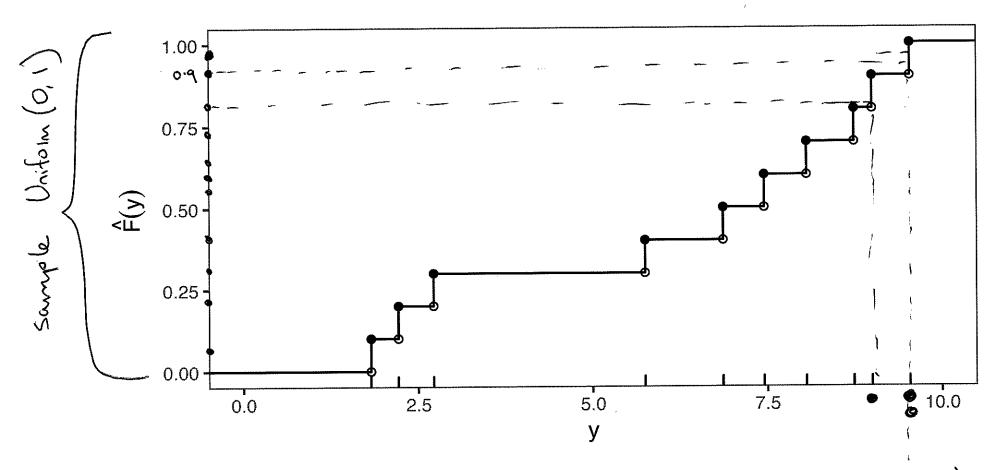
You can sample from any c.d.f by sampling from a Uniform(0, 1), then transforming with the inverse c.d.f.

I.e. sample u_1, \ldots, u_n i.i.d from Uniform(0,1), then

$$y_i = F^{-1}(u_i)$$
 $i = 1, ..., n$

are distributed with c.d.f F(y).

In the empirical case



Sampling from the ECDF is equivalent to sampling with F'(0.9) = 9.5 replacement from the original sample.

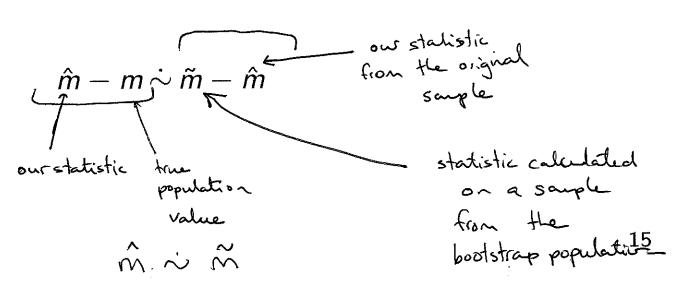
Example - Sampling distribution of Median by bootstrap

Repeat for $k = 1, \dots, B$

- 1. Sample nobservations with replacement from Y_1, \ldots, Y_n
- 2. Find sample median, $m^{(k)}$

Then the bootstrapped sample medians, $m^{(k)}, k = 1, ..., B$ approximate the sampling distribution of the sample median.

A little more subtly:



Example

F(y) earlies based on this sample

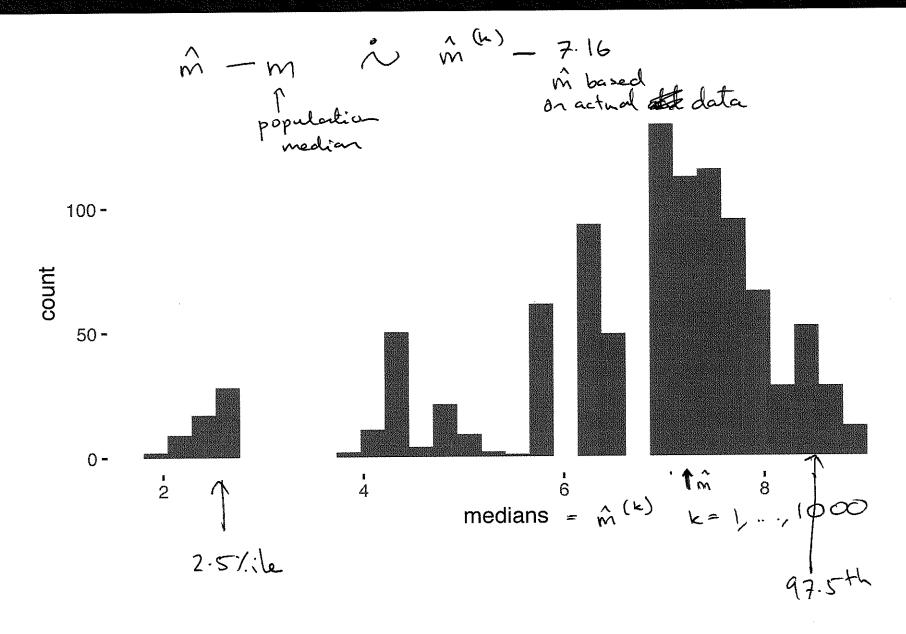
Sample values: 1.8, 2.2, 2.7, 5.7, 6.9, 7.4, 8.1, 8.7, 9 and 9.5

Sample median: 7.1562828 7.16

A bootstrap resample: 1.8, 2.7, 2.7, 5.7, 6.9, 7.4, 8.1, 8.1, 8.7 and 9.5

Sample median: $7.1562828 7.16 = \hat{m}^{(1)}$

Many resamples



Bootstrap confidence intervals

Many methods..

A common one:

• Quantile: $100(\alpha/2)$ largest resampled statistic value, and $100(1-\alpha/2)$ largest resampled statistic value

Comments on the bootstrap

Relies on $\hat{F}(y)$ being a good estimate of the F(y), doesn't necessarily solve small sample problems.

Resampling should generally mimic original study design. E.g. If pairs of observations are sampled from a population, pairs should be resampled