Randomization/Permutation tests

ST551 Lecture 28

Charlotte Wickham

2017-11-29

Contingency Tables

$$G_{i}=0$$

$$G_{i}=0$$

$$G_{i}=1$$

$$G_{i}=0$$

$$G_{i}=1$$

Chi-square
Fishes's

DR -> / ad
bc

bc ad

Two proportions 2-test
$$\hat{p}_{Y} \rightarrow P(Y_{i}=1 \mid G_{i}=0)$$

$$\hat{p}_{X} \rightarrow GP(Y_{i}=1 \mid G_{i}=1)$$

Announcements

I haven't received any suggestions for the formula sheet...draft on class webpage

Homeworks:

- 40% of your grade
- Lowest (%) HW dropped
- Remaining 8 homeworks will be weighted equally (i.e. 5% each)
- I'll update canvas with this contribution after HW #8 graded

Friday: no lecture, I'll be in my office.

·			

Randomized experiments

Two common study designs

- 1. Random Sampling study
- Population Inferences

 V. i.i.d from some

 population
- Units are randomly sampled from the population(s)
- Units are observed
- 2. Randomized Experiment -> Cansal Inference
 - A group of units is selected

A population(s) is defined

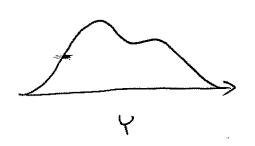
- Units are randomly assigned to different levels of a treatment variable
- Units are observed

Random Sampling Model

	`		

KEY COMBONENTS

<u>Population</u> Distribution



Sample

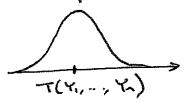
Draw a random Sample from population:

Statistic

One number summary of the sample: $T(Y_1,...,Y_n)$ eg. Y

Sampling Distribution

Distribution of the statistic over all possible random samples.



SO FAR we have been working left to right

We know (or assure) + the population dist.

Know sample size, n + Pick a statistic Ed derive simulate machanism

derive know) the simulate sampling dist. approximate

Relate properties
to population
properties

INFERENCE goes right to left ==

Make a statement be have one about the population III Sample:

sample: the calcutate sample: a stadistic with the sample

HOW? Use => relationship between pop. dist and sampling dist. to guide us

Randomized Experiment Model

Experimental & Units

7 7

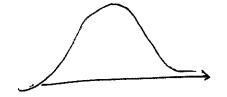
Random assignment

Assign treatments to units at random Statistic

One nuber sunnay of data

Randomization Dist

Distribution of statistic over all possible radon assignments of units to freatments

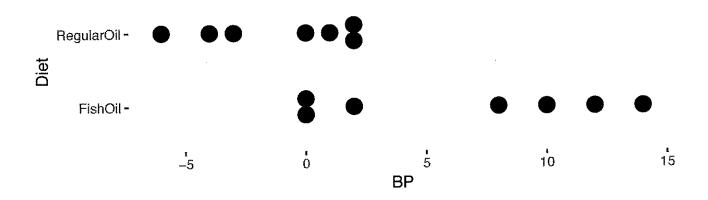


Example

library(Sleuth3)

?ex0112

Researchers used 7 red and 7 black playing cards to randomly assign 14 volunteer males with high blood pressure to one of two diets for four weeks: a fish oil diet and a standard oil diet. These data are the reductions in diastolic blood pressure.



Example

Did the fish oil decrease BP more than the Regular Oil?

Sample mean	. 5		FishOil -
	FishOil	RegularOil	RegularOil
	6.571	-1.143	7.714

		•

Randomization Distribution

The randomization distirbution is the distribution of the statistic over all possible assignments of the treatments to the experimental units.

Just like the sampling distribution you can:

- derive it
- approximate it
- simulate it

	,	

Simulating the Randomization Distribution

The usual null hypothesis in randomized experiments: no difference between treatments.

We observe pairs (Y_i, T_i) where Y_i is observed response, and T_i is the treatment applied (let's say $T_i = 1$ or 2).

Often an additive model is assumed: $Y_i \mid (T_i = 2) = Y_i \mid (T_i = 1) + \delta$

Under null $\delta = 0$, or if null is true, we observe $Y_i = y_i$ regardless of the treatment unit i receives.

We only observe one of $(Y_i, T_i = 1)$ or $(Y_i, T_i = 2)$, but if the null is true, we know what we would observe for person i under the other treatment, the same value.

Example cont.

Null hypothesis: no difference between treatments

Alf universe	BP	Subject	BP	Diet
Alf. universe Regular Oil	8	2	8	FishOil
9		10	12	FishOil
		\	10	FishOil
		11	14	FishOil
		,	2	FishOil
			0	FishOil
			0	FishOil
			-6	RegularOil
		•	0	RegularOil
		•	1	RegularOil
			2	RegularOil
			-3	RegularOil
			-4	RegularOil
			2	RegularOil

Subject #2 radomly was assigned Fish Oil

Example cont.

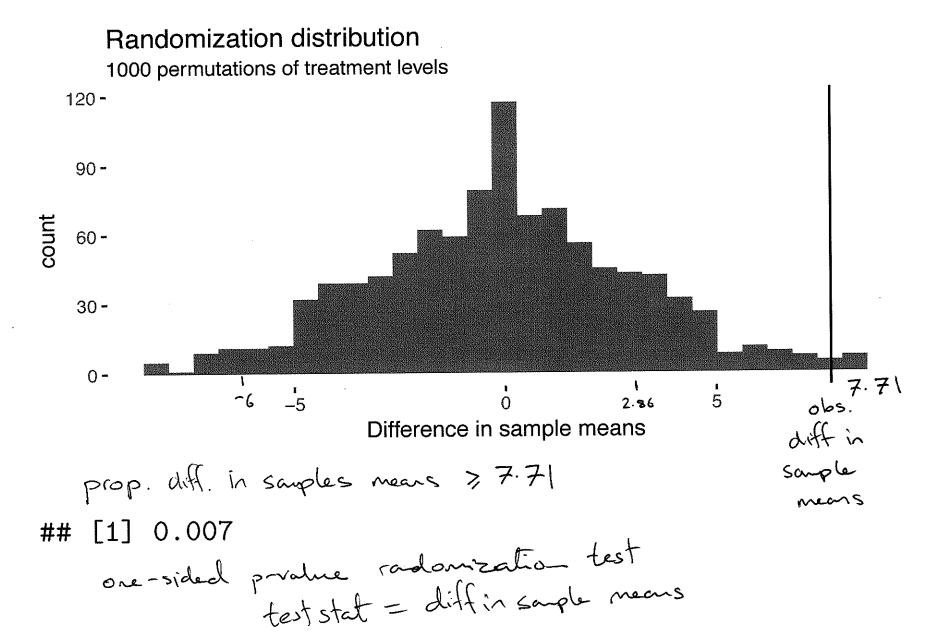
Null hypothesis: no difference between treatments

BP	Diet	random_1	random_2
8	FishOil	RegularOil	FishOil
12	FishOil	RegularOil	FishOil
10	FishOil	RegularOil	RegularOil
14	FishOil	RegularOil	FishOil
2	FishOil	RegularOil	RegularOil
0	FishOil	RegularOil	RegularOil
0	FishOil	FishOil	RegularOil
-6	RegularOil	RegularOil	FishOil
0	RegularOil	FishOil	RegularOil
1	RegularOil	FishOil	RegularOil
2	RegularOil	FishOil	FishOil
-3	RegularOil	FishOil	FishOil
-4	RegularOil	FishOil	RegularOil
2	RegularOil	FishOil	FishOil
,	7.714	-MN473 - 6.00	2.86

(14) ~ 3000 7

12

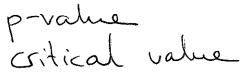
Many permutations



•		
	·	

Randomization test

- 1. Pick a test statistic
- 2. Simulate the randomization distribution of the test statistic under all (or many) different assignments of the treatments Repeat many times:
 - 2.1 Permuate treatment labels over observed values
 - 2.2 Recalculate test statistic
- 3. Compare the observed test statistic to the randomization distribution



It twos out:

If you use t-statistic as
your last statistic $\frac{\overline{Y}-\overline{X}}{\sqrt{5r(h+m)}}$

If n is "large" ad Y isn't too discrete,

the radomization dist is very close to a t-distribution

equivalent to a t-test

Randomization test: Comments

Exact? Consistent? Depends on the test statistic.

E.g. the test statistic 'difference in sample medians' isn't an exact test for equality of population medians unless we add an *additive* effect assumption.

Why? Reference distribution is calculated under the asssumption that the values from the two groups are exchangable.

Sometimes used with random sampling studies (often referred to as a permutation test). Pretends population membership is like a random assignment.

·			
A.			

The bigger picture

One sample t-test

is a special case of regression

t-test on the coefficient Bois

the regression $V_i = \beta o + \epsilon_i$ $\epsilon_i \sim N(0.6^2)$

Two sample t-test

(equal variance)

4: i=1,..., m+1

Gi = { O obs. i from pop. 1

2

Paired t-test

t-test on the coefficient B.

Yi= Bo+B. Gi+E.

 $Y_{ij} = \beta_0 + \alpha_j + \beta_i G_{ij} + \epsilon_{ij}$ $i = 1, 2 \quad \alpha_j \sim NU$ j = 1, ..., n16

t-test Regression 57552 Mixed Models Paried ST 553 ST 555 Logistic Regression Binomial Proportions E Carealized Multinomial

Linear Model